$\underline{\text { Astro-Calendar }}$ User Profile • Space Weather • Ocean Tides • Meteo • Weather

Balloons • Islam. Prayer Times
\rightarrow Nightvision-Mode

Select start of calculation:

\rightarrow E-mail Alert Manager

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping

 Space Calendar:\square Birthdays, Rocket Launches
Local Events
(Talks, Exhibitions)
\square NASA TV Guide
Local Telescope Dealers
\square Public Holidays
\square Saint's Day Zodiac of today.
Change of Zodiac Islamic, Indian,
\square Persian and Hebrew

Calendar
\square Week Number
Sundials / GPS
\square Time / Current Time Definitions
\square Julian Day Number
\square Sidereal Time
Sidereal Time
Local Magnetic Field

General events
Lunar Occultations
(2 months)
Planetary
Conjunctions
Lunar Eclipses
Solar Eclipses and Transits

- Meteor Streams Planetary Phenomena
■ Lunar Phenomena
- The Sun

Asteroids (6 months)
\square Comets

Earth orbiting

 satellitesSpace Station ISS (1 month) short duration

- Flares of Iridium satellites (14 days) Passes of other
(0) bright satellites (7 days, slow!)
Daily reoccurring events
© Sun and Moon
- Planets
- Asteroids
- Comets
- Meteor Streams
\square Polar Star Transits
\square Weather Balloons

Dimmer and more difficult objects

Jupiter: Great Red

- Spot and satellite events
Jupiter's Satellites:
position
Saturn: Satellite
events and storms
Saturn's Satellites:
position
Zodiacal
light/Gegenschein
Variable Stars (3
months)
\square Supernovae
\square Binary Stars
Deep sky objects
Milky Way
\square Galaxies
\square Open Star Clusters
Globular Star
Clusters
Nebula

Wednesday 29 August 2012

	e (24-hour clock)	Object (Link)	Event
3		Observer Site	grasse, France WGS84: Lon: +6d55m35.4s Lat: +43d39m36.6s Alt: 339m All times in CET or CEST (during summer)
3	5.5h	\bigcirc ¢ Venus	Magnitude $=-4.2 \mathrm{mag} \quad$ Best seen from $3.2 \mathrm{~h}-6.9 \mathrm{~h}$ $\left(\mathrm{~h}_{\text {top }}=39^{\circ}\right.$ at E at 6.9h) (in constellation Gemini) $R A=7 \mathrm{~h} 28 \mathrm{~m} 41 \mathrm{~s}$ Dec $=+19 \circ 36.8^{\prime} \quad(\mathrm{J} 2000)$ Distance=0.814AU Elongation $=45^{\circ} \quad$ Phase $k=57 \%$ Diameter=20.5"
(3)	5.5h	21 Jupiter	Magnitude $=-2.4 \mathrm{mag} \quad$ Best seen from 0.4h-6.7h $\left(h_{\text {top }}=63^{\circ}\right.$ at SE at 6.7 h) (in constellation Taurus) $R A=4 \mathrm{~h} 51 \mathrm{~m} 25 \mathrm{~s}$ Dec $=+21^{\circ} 42.2^{\prime} \quad(\mathrm{J} 2000)$ Distance=5.068AU Elongation $=82^{\circ} \quad$ Diameter $=38.8^{\prime \prime}$
(3)	5.5h	$1 \begin{aligned} & \text { Deep-Sky } \\ & \text { Observing } \end{aligned}$	Best time interval for observing dim objects: 4.3h5.5h
3	5h45m32s	$\underline{(15354}$ $\frac{1984-108-B)}{\rightarrow \text { ERBS }}$ \rightarrow Gtand track \rightarrow Start	
83	5 h 47 m	($)^{\text {Sun }}$	Dawn
(3)	5h48.2m	OMercury	Rise Azimuth $=68.8{ }^{\circ}$, ENE (in constellation Leo)
(3)	5.9h	Y Mercury	```Magnitude=-1.3mag Best seen from 5.9h - 6.7h (htop=90 at ENE at 6.7h) (in constellation Leo) RA= 9h47m59s Dec=+14049.6' (J2000) Distance=1.220AU Elongation= 120 Phase k=87% Diameter=5.5"```
(3)	5h52m21s	$\quad \frac{\text { Cosmos }}{1271}$ $\frac{\text { Rocket }}{}$ $\frac{(12465}{1981-046-B)}$ \rightarrow Ground track \rightarrow Star chart	
3	5h54m46s	$\begin{aligned} & \frac{\text { Shenzhou 9 }}{(79601)} \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(3)	6h00m01s	$\frac{\text { Tiangong-1 }}{(37820}$2011-053-A) \rightarrow Ground track \rightarrow Star chart	
3	6h02m55s	$\underline{\text { Lacrosse } 5}$$\underline{(28647}$Rocket \rightarrow Ground track \rightarrow Star chart	
(3)	6h04m46s	* Iridium 81	```Flare from solar panels Magnitude= 0.8mag Azimuth=217.60 SW altitude= 21.70}\mathrm{ in constellation Cetus Flare angle=3.670```

			Flare center line, closest point \rightarrow MapIt: Longitude $=8.724^{\circ} \mathrm{E}$ Latitude $=+43.183^{\circ}$ (WGS84) Distance $=154.4 \mathrm{~km}$ Azimuth=109.5 ${ }^{\circ}$ ESE Satellite above: longitude $=2.1^{\circ} \mathrm{W}$ latitude $=+32.3^{\circ}$ height above Earth=780.8 km distance to satellite $=1754.4 \mathrm{~km}$ Altitude of Sun=-8.30
5	6h05m	Q Sun	Sun 9° below horizon
5	6h13m39s	\% Iridium 82	Flare from solar panels Magnitude=-2.6mag Azimuth=221.70 SW altitude $=18.1^{\circ}$ in constellation Cetus Flare angle $=0.05^{\circ}$ Flare center line, closest point \rightarrow MapIt: Longitude $=6.901^{\circ} \mathrm{E}$ Latitude $=+43.667^{\circ}$ (WGS84) Distance=2.2 km Azimuth=291.1 ${ }^{\circ}$ WNW Satellite above: longitude $=4.1^{\circ} \mathrm{W}$ latitude $=+32.6^{\circ}$ height above Earth=781.2 km distance to satellite $=1828.1 \mathrm{~km}$ Altitude of Sun=-6.80
(3)	6h23m	C) Sun	Begin civil twilight

16 Items/Events: Export to Outlook/iCal Brant $_{\text {Print }} \square$ E-mail
Used satellite data set is from 29 August 2012
Show glossary

\triangle Top

This material is ©1998-2012 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 16 October 2012 Database updated 5 min ago

Current Users: 334

19 Oct 2012, 16:07 UTC 597 minutes left for this session ${ }_{\text {目 }}$ / Mode for our sponsors

| Intro Calendar Sun \mid Moon \mid Planets Comets Asteroids \mid Meteors \mid Deep-Sky Satellies
Introduction - Sat-Library • Selected Satellite • Internat. Space Station ISS •
Cole Space Shuttle • Satellites within interval - Tracking/Identification • (Iridium) Flares
ECfos Tumbling Iridium • Geostationary • Radio Amateurs • GPS/GLONASS Star Chart
Decaying Satellites - Sun/Moon Crossers, Occultations
\rightarrow Nightvision-Mode
\rightarrow E-mail Alert Manager
Select start of calculation:
Date: 29 August

Select duration: 10 Minutes
Select interval: 10 Seconds go

Time:

2012 August 29 Wednesday, 5 h 55 m 04 s
JD: 2456168.6632407 TDT: 2456168.6640137 deltaT: 66.78 sec
Apparent sidereal time: Local: 2 h 53 m 50.256 s Greenwich: 2 h 26 m 07.898 s
(All times in CEST, UTC+02:00, topocentric data for grasse, France)

Map Center:

Azimuth direction: 72.39° ENE (East-Northeast)
Altitude:
Right Ascension:
Declination:
89.84°
2 h 54 m 42.421 s Apparent coordinates

Right Ascension:
Declination:

$$
\begin{array}{rrr}
2 \mathrm{~h} 53 \mathrm{~m} \mathrm{50.256s} & \mathrm{~J} 2000 \\
+\quad 43^{\circ} 391 & 36.55 \text { " } 2000
\end{array}
$$

Rises: $\quad 19 \mathrm{~h} \mathrm{19m}$
Transit: $5 \mathrm{~h} \mathrm{55m} 56 \mathrm{~s}$
Sets: $\quad 16 \mathrm{~h} 29 \mathrm{~m}$
Opposition in R.A.: 8. November 2012 4h 55m CET Elongation: 153.0°
Conjunction in R.A.

$$
\text { 6. May } 2012 \quad 8 \mathrm{~h} \quad \overline{5 \mathrm{~m}} \text { CEST Elongation: } 27.0^{\circ}
$$

Sun:

Altitude:	-9.9°
Azimuth:	66.0°

$$
\text { Brint } \propto \text { E-mail }
$$

Positions are shown in topocentric astrometric equatorial coordinates at equinox $\mathbf{J} 2000.0$ (Right Ascension/Declination) and epoch of date given. Stereoscopic projection is used for the star chart. If you zoom into a field of view in order of minutes of arc, you will get a fantastic photographic background image from the Digitized Sky Survey (DSS) from the Mount Palomar observatory.

Pointing the mouse to targets reveals their names - the higher the selected user level, the more features are labeled. The highest level 'Astronomer' displays all object names. You can switch the user level just next to the small Earth icon on top of each page.
\triangle Top
This material is ©1998-2012 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is

Create new default account/Logout
ents, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

